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A stochastic infinite dimensional version of the GOY model is rigorously investigated.
Well posedness of strong solutions, existence and p-integrability of invariant measures
is proved. Existence of solutions to the zero viscosity equation is also proved. With
these preliminary results, the asymptotic exponents ζp of the structure function are
investigated. Necessary and sufficient conditions for ζ2 ≥ 2/3 and ζ2 = 2/3 are given
and discussed on the basis of numerical simulations.
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totic exponents

1. INTRODUCTION

The GOY model, from E. B. Gledzer, K. Ohkitani, M. Yamada, is a simplified
Fourier system with respect to the Navier–Stokes one, where the interaction be-
tween different modes is preserved only between nearest neighbors (see Sec. 1.1).
Questions related to the cascade of energy in turbulent flows from large to small
scales could potentially be better understood in such a case.

There is an extended literature on the GOY model and, more generally, on
shell models; however it is mainly dedicated to the numerical approach and as a
consequence, to the finite dimensional case (see, for instance, Refs. 2, 3, 7, 16).
In a recent work(5) some results of regularity, attractors and inertial manifold are
proved for a deterministic infinite dimensional shell model.

In the study of 3D turbulence, among the quantities of major interest are
the asymptotic exponents ζp of the p-order structure function, defined in Sec. 4.1.
Numerical investigations as well as heuristics based on physical intuition have been
extensively developed to support a multifractal structure of ζp (see for instance
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Refs. 2, 3, 16, 14 and references therein). There is general agreement on ζp <
p
3

for large p and on ζ3 = 1. Less clear is the value of ζ2, prescribed to be 2/3 by
Kolmogorov theory(17) for 3D turbulent fluids; certain simulations and methods
of fit gave a value larger than 2/3. In Sec. 4.4 we try to motivate the dynamical
interest in the difference between the two cases ζ2 > 2/3 and ζ2 = 2/3. Let us
emphasize the lack of mathematically rigorous results on these questions.

On the basis of previous works, especially, (12,20) we believe that some rigorous
informations on questions of turbulence theory could be obtained from stochastic
versions of the equations of fluid dynamics. In a sentence, the advantage of
the stochastic case is the major simplicity of balance laws between mean rates
of energy injection, dissipation and flux (and variants like mean rate of vortex
stretching, see Ref. 12), see Proposition 14. The mean values are computed for
a stationary state. Such a stationary state is not an equilibrium state and Gibbs
paradigm does not apply. Thus there is at present no chance to compute mean rates
from a statistical ensemble; the only hope is to write powerful relations between
different rates, and this is accomplished by Itô formula and stochastic analysis.

Our aim in this research project on the stochastic GOY equations has thus
been to investigate such balance laws in one of the simplest settings related to fluid
dynamics.

With these general motivations in mind, we present here some preliminary
results, although incomplete, with the hope to motivate further research. We first
prove a number of necessary foundational results of well posedness and invariant
measures. Precisely, in Sec. 2 we prove existence of strong (in the probabilistic
sense) solutions by a pathwise method, we prove pathwise uniqueness and some
continuous dependence results, and show p-integrability of solutions under proper
assumptions. As a side result, we consider the zero viscosity case and prove
existence of global solutions. This is remarkable in constrast to the case of 2 and 3
dimensional Navier–Stokes equations, as we remark in Sec. 2.4; our proof makes
essential use of the finite size interaction of the non-linear term.

In Sec. 3 we continue the preliminary part and prove the existence of invariant
measures, their p-integrability necessary to introduce the structure function, and
the basic balance relations between mean rates of dissipation, flow and energy
injection, used in the second part of the paper.

Based on these rigorous foundations, in Secs. 4.1 and 4.2 we settle a frame-
work to study asymptotic exponents, with some definitions and general elementary
results, not specific of the GOY model. Finally, in Sec. 5 we show how the bal-
ance laws of the stochastic GOY equations may add rigorous informations on the
asymptotic exponents. Our main results concern the characterization of both the
sentences ζ−

2 ≥ 2/3 and ζ2 = 2/3 in terms of upper and lower bounds on the ratio

Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
. (1)
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These results do not prove ζ−
2 ≥ 2/3 or ζ2 = 2/3 but give necessary and sufficient

conditions for them. At present, the interest in these conditions is numerical: it
offers an alternative way to explore the value of ζ2 with respect to estimating a slope
of a rather oscillating curve, which could be the origin of little discrepancies in the
results. For the future, we may hope to understand something about the statistical
dependence of the variables un , un+1, un+2 and deduce theoretical informations
on the ratio (1).

1.1. The Model

The stochastic infinite dimensional GOY model is described by an infinite
sequence (un (t))n≥−1 of complex valued functions (un (t) = un,1 (t) + iun,2 (t))
subject to the constraints

u−1 (t) = u0 (t) = 0

and to the equations for n = 1, 2, . . .

dun + νk2
nundt + ikn

(
1

4
un−1un+1 − un+1un+2 + 1

8
un−1un−2

)
dt = σndβn (2)

where un denotes the complex conjugate of un , ν > 0 will be called viscosity,
kn = 2nk0 will be called wave numbers (k0 > 0 given). Heuristically, in the GOY
model, the variable un will correspond to an average value of the Navier–Stokes
Fourier components of wavenumbers in a “shell,” namely the interval k0(2n, 2n+1).
The reason for the exponential growth of the the size of the shells is to mimic
Kolmogorov cascade (see for instance Refs. 7, 14, 16). (σn)n≥1 are 2 × 2 real
matrices, the “intensities” of the noise, and (βn)n≥1 is a sequence of independent
complex-valued Brownian motions on a probability space (�,F , P), with expec-
tation denoted by E . The assumptions on σn are very general in the foundational
part of the paper, but the case of main interest in view of K41 theory is when σn

is different from zero only for the first few values of n (noise acting only on the
largest scales). We could extend many theoretical results of this paper to the case
of u-dependent coefficients (σn (u))n≥1, under appropriate assumptions, but this
generality is at present poorly motivated, so we restrict to a basic case.

1.2. Infinite Dimensional Set-up

Similarly to the theory of Navier–Stokes equations, we would like to rewrite
system (2) as an infinite dimensional equation of the form (3) below. To this aim,
let us introduce some function spaces and operators.
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Let us introduce the following spaces of complex valued sequences; we
consider them as vector spaces on the field of real numbers. The space

H =
{

u = (u1, . . .) ∈ C
∞ :

∞∑

n=1

|un|2 < ∞
}

is a (real) Hilbert space with the inner product

〈u, v〉H := Re
∞∑

n=1

unvn

and the norm given by |u|2H = ∑∞
n=1 |un|2. Let us recall that we have defined

kn = 2nk0, n ≥ 1, with k0 > 0 given. We introduce now the Hilbert spaces D(A) ⊂
V ⊂ H defined as

V =
{

u ∈ H :
∞∑

n=1

k2
n |un|2 < ∞

}

with norm ‖u‖2
V = ∑∞

n=1 k2
n |un|2, and

D(A) =
{

u ∈ H :
∞∑

n=1

k4
n |un|2 < ∞

}

.

On the latter space we define the linear operator A : D(A) ⊂ H → H as

(Au)n = k2
nun, ∀u ∈ D(A).

The operator A is selfadjoint and strictly positive definite:

〈Au, u〉H ≥ k0 |u|2H , ∀u ∈ D(A).

We finally introduce the bilinear operator B (., .) : V × H → H defined as

B (u, v)n = ikn

(
1

4
vn−1un+1 − 1

2
(un+1vn+2 + vn+1un+2) + 1

8
un−1vn−2

)
.

Since
∞∑

n=1

k2
n |un|2 |vn|2 ≤

(
sup

n
k2

n |un|2
) ∞∑

n=1

|vn|2 ≤ ‖u‖2
V |v|2H

it is easy to verify that B (u, v) ∈ H when (u, v) ∈ V × H ; but also when (u, v) ∈
H × V , so we may define B also in the spaces B (., .) : H × V → H . Let us
summarize this fact:

Lemma 1. There is a constant C > 0 such that

|B (u, v)|H ≤ C ‖u‖V |v|H
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and

|B (u, v)|H ≤ C ‖v‖V |u|H

for u and v in the proper spaces.

We have

〈B(u, v), v〉 = 0

whenever defined. Indeed,

−i

k0
〈B(u, v), v〉

= −i

k0

∞∑

n=1

ikn

(
2−2vn−1un+1 − 2−1 (un+1vn+2 + vn+1un+2) + 2−3un−1vn−2

)
vn

=
∞∑

n=1

2n−2vn−1vnun+1 −
∞∑

n=1

2n−1vnun+1vn+2

−
∞∑

n=1

2n−1vnvn+1un+2 +
∞∑

n=1

2n−3vn−2un−1vn

=
∞∑

n=0

2n−1vnvn+1un+2 −
∞∑

n=1

2n−1vnun+1vn+2

−
∞∑

n=1

2n−1vnvn+1un+2 +
∞∑

n=−1

2n−1vnun+1vn+2

by change of variable, and this is zero.

Remark 2. There are infinitely many operators B(u, v) with the previous prop-
erties which extend B(u, v). The present choice looks more elegant.

Consider also the space V ′ defined as

V ′ =
{

u = (u1, . . .) ∈ C
∞ :

∞∑

n=1

k−2
n |un|2 < ∞

}

.

We have H ⊂ V ′ and V ′ is the dual of V (with respect to H ), with dual pairing
between V ′ and V defined as

〈u, v〉V ′,V := Re
∞∑

n=1

unvn, ∀u ∈ V ′, v ∈ V .

It coincides with 〈u, v〉H when u ∈ H .
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It is easy to extend A as a bounded linear operator from V to V ′. One can also
extend B to a bilinear operator B (., .) : H × H → V ′. The definition is possible
because

|B(u, v)|2V ′ =
∞∑

n=1

k−2
n |B(u, v)n|2 ≤ C

∞∑

n=1

v̄2
n ū2

n ≤ C |u|H |v|H .

We still have

〈B (u, v) , z〉V ′,V = −〈B (u, z) , v〉H

with now u, v ∈ H , z ∈ V .

2. WELL POSEDNESS

Existence of solutions can be proved in several ways. First, one can follow
the pathwise approach described here as well as an approach based on solutions
to the martingale problem. The one chosen here seems to be more elementary.
Second, one can follow general lines of proof inspired to the theory of Navier-
StokesNavier–Stokes equations or one can use particular tricks related to the
finite-range interaction of the modes. We mostly adopt the general viewpoint
which is more unifying, but we strongly use the finite-range interaction in the
section on the ν → 0 limit.

Let us start with pathwise estimates on the difference of two solutions. Even if
the model resembles the 3D Navier–Stokes equations for some qualitative aspects,
these estimates are even stronger than those of the 2D case.

2.1. Pathwise Uniqueness and Continuous Dependence

on Initial Conditions

Consider the equation

du (t) = [−ν Au (t) − B (u (t) , u (t))] dt + dW (t) , t ≥ 0 (3)

where (W (t))t≥0 is a Brownian motion in H defined on a filtered probability
space

(
�,F , (Ft )t≥0 , P

)
, with nuclear covariance operator Q (a nuclear semi-

definite symmetric operator in H ). We impose an initial condition given by an
F0-measurable random variable u0 : � → H . As usual, we interpret the equation
in the integral weak sense

〈u(t), ϕ〉H +
∫ t

0
ν 〈u(s), Aϕ〉H ds −

∫ t

0
〈B (u(s), ϕ) , u(s)〉H ds

= 〈u0, ϕ〉H + 〈W (t), ϕ〉H (4)
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with ϕ ∈ D(A). When u(s) ∈ V , we have

−〈B (u(s), ϕ) , u(s)〉H = 〈B (u(s), u(s)) , ϕ〉H

while in general if u(s) ∈ H , we have

−〈B (u(s), ϕ) , u(s)〉H = 〈B (u(s), u(s)) , ϕ〉V ′,V

so (4) is a generalized version of (3), with a meaning even if just u(s) ∈ H (at
least integrable in s).

Definition 3. We say that a continuous adapted processes in H is a solutions of
(3) if P-a.s. the integral Eq. (4) is satisfied for every t ≥ 0 and ϕ ∈ D(A).

Theorem 4. Let (u(1)(t))t≥0, (u(2)(t))t≥0, be two continuous adapted solutions of
(3) in H, with initial conditions u(1)

0 and u(2)
0 as above. Then there is a constant

Cν > 0, depending only on ν, such that

∣∣u(1)(t) − u(2)(t)
∣∣2

H
≤ e

Cν

∫ t
0

(|u(1)(s)|2

H
+|u(2)(s)|2

H

)
ds

∣∣∣u(1)
0 − u(2)

0

∣∣∣
2

H
, t ≥ 0

with probability one. In particular, if u(1)
0 = u(2)

0 , then

P(u(1)(t) = u(2)(t ) for every t ≥ 0) = 1.

Proof: For n ∈ N, let Jn : H → D(A) be the Yosida approximations defined as
Jn = n (n + A)−1 (in the following proof one can replace Jn by πn defined in the
sequel; we use Jn to explore one more tool). It is easy to check or well known that
Jn are selfadjoint in H , commute with A, limn→∞ Jn x = x for every x ∈ H , the
extensions Jn : V ′ → V are well defined and equibounded and limn→∞ Jn x = x
for every x ∈ V ′. Let u(t) be a solution and

un(t) = Jnu(t).

From (4) with ϕ = Jnψ and from the extension results of the previous section
we have

〈un(t), ψ〉H +
∫ t

0
ν 〈Aun(s), ψ〉H ds +

∫ t

0
〈Jn B (u(s), u(s)) , ψ〉H ds

= 〈un(0), ψ〉H + 〈Jn Wt , ψ〉H .

So we may write the integral equation in H

un(t) +
∫ t

0
ν Aun(s) ds +

∫ t

0
Jn B (u(s), u(s)) ds = un(0) + Jn Wt .
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With the notation v(t) = u(1)(t) − u(2)(t), we have

vn(t) +
∫ t

0
ν Avn(s)ds = vn(0) −

∫ t

0
Jn B

(
u(1) (s) , v(s)

)
ds

−
∫ t

0
Jn B

(
v(s), u(2) (s)

)
ds.

This implies that vn(t) is differentiable in t and by the chain rule in H we have

1

2

d

dt
|vn(t)|2H + ν ‖vn(t)‖2

V = − 〈
Jn B

(
u(1) (t) , v(t)

)
, vn(t)

〉
H

− 〈
Jn B

(
v(t), u(2) (t)

)
, vn(t)

〉
H

.

Now
∣∣〈Jn B

(
u(1) (t) , v(t)

)
, vn(t)

〉
H

∣∣ ≤ C
∣∣Jn B

(
u(1) (t) , v(t)

)∣∣
V ′ ‖vn(t)‖V

≤ C
∣∣u(1) (t)

∣∣
H

|v(t)|H ‖vn(t)‖V

≤ ν

4
‖vn(t)‖2

V + Cν

∣∣u(1) (t)
∣∣2

H
|v(t)|2H

and, in the same way,
∣∣〈Jn B

(
v(t), u(2) (t)

)
, vn(t)

〉
H

∣∣ ≤ ν

4
‖vn(t)‖2

V + Cν

∣∣u(2) (t)
∣∣2

H
|v(t)|2H .

Therefore

|vn(t)|2H ≤ |vn(0)|2H + Cν

∫ t

0

(∣∣u(1) (s)
∣∣2

H
+ ∣∣u(2) (s)

∣∣2

H

)
|v(s)|2H ds.

As n → ∞ we get

|v(t)|2H ≤ |v(0)|2H + Cν

∫ t

0

(∣∣u(1) (s)
∣∣2

H
+ ∣∣u(2) (s)

∣∣2

H

)
|v(s)|2H ds.

By Gronwall lemma, the proof is completed. �

2.2. Existence: Pathwise Solution

Given

u0 ∈ H, ω ∈ Cα ([0, T ] ; H )

for some α > 0, we consider the deterministic equation

〈u(t), ϕ〉H +
∫ t

0
ν 〈u(s), Aϕ〉H ds −

∫ t

0
〈B (u(s), ϕ) , u(s)〉H ds (5)

= 〈u0, ϕ〉H + 〈ω(t), ϕ〉H
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with ϕ ∈ D(A). It can be differentiated in time only in the sense of distributions.
Our aim is to prove the existence of a solution u, continuous in H . The uniqueness
is true as in the previous section.

We introduce the finite dimensional subspaces Hn of H given by all u ∈ H
with zero components except for u1, . . . , un:

Hn = {
u ∈ H : u j = 0∀ j > n

}
.

Then we introduce the finite dimensional orthogonal projections πn : H → Hn

and consider the stochastic differential equation in Hn

u(n) (t) +
∫ t

0

[
ν Au(n) (s) + πn B

(
u(n) (s) , u(n) (s)

)]
ds = πnu0 + πnω (t) . (6)

By the classical contraction principle, it is very easy to prove existence and
uniqueness of a solution (u(n)(t))t∈[0,τ ] on some time interval [0, τ ] (local solution).
Alternatively, one may apply the well known Cauchy theorem for differential
equations of the form y′ = F(t, y) with F continuous in (t, y), locally Lipschitz
continuous in y uniformly in t , to the equation for v(n)(t) below.

We are going to prove now an a priori estimate that implies that the solution
is global in time. Consider the auxiliary linear equation in Hn

z(n) (t) +
∫ t

0
ν Az(n) (s) ds = πnω (t) . (7)

Lemma 5. There exists a unique global continuous solution z(n) in Hn, given by

z(n) (t) = πnz (t)

where z ∈ C ([0, T ] ; H ) is given by

z (t) = S(t)ω (t) −
∫ t

0
ν AS(t − s) (ω (s) − ω (t)) ds (8)

where S(t) is the analytic semigroup in H generated by ν A.

The proof of this lemma is based on standard techniques that can be found,
for instance, in Ref. 10.

We state the following preliminary result.

Theorem 6. Equation (6) has a unique continuous solution (u(n)(t))t≥0 in H. In
addition there is a constant C(T, |u0|H , |ω|Cα ([0,T ];H )), independent of n, such that
(11) holds true.
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Proof: We introduce the function v(n) (t) := u(n) (t) − z(n) (t), t ∈ [0, τ ], which
is differentiable on [0, τ ] and satisfies

dv(n)

dt
+ ν Av(n) + πn B

(
u(n), u(n)) = 0 (9)

with the initial condition v(n) (0) = πnu0. Thus, using the same arguments of the
proof of Theorem 4 we get the estimate

1

2

d

dt

∣∣v(n)
∣∣2

H
+ ν

2

∥∥v(n)
∥∥2

V
≤ Cν

(∣∣z(n)
∣∣2

H

∣∣v(n)
∣∣2

H
+ ∣∣z(n)

∣∣4

H

)
. (10)

By Gronwall lemma

∣∣v(n) (t)
∣∣2

H
≤ ∣∣v(n) (0)

∣∣2

H
e
∫ t

0 C|z(n)(s)|2

H
ds + C

∫ t

0
e
∫ t
σ

C|z(n)(s)|2

H
ds

∣∣z(n) (σ )
∣∣4

H
dσ.

Since z(n) is continuous in H , with supt∈[0,T ] |z(n)(t)|2H depending only on the norm
of ω in Cα ([0, T ] ; H ) (with constants independent of n) and v(n) (0) = πnu0, we
deduce that

sup
t∈[0,τ ]

∣∣v(n) (t)
∣∣2

H
≤ C(T, |u0|H , |ω|Cα ([0,T ];H )).

Therefore

sup
t∈[0,τ ]

∣∣u(n) (t)
∣∣2

H
≤ C(T, |u0|H , |ω|Cα([0,T ];H )). (11)

This a priori bound give us the global existence of u(n) on [0, T ]. The proof is
complete. �

We can now prove the following result.

Theorem 7. Given

u0 ∈ H, ω ∈ Cα ([0, T ] ; H )

for some α > 0, there exists one and only one solution u in C ([0, T ] ; H ) of the
deterministic Eq. (5).

Proof: From (10) and the previous estimates, we have
∫ T

0

∥∥v(n) (t)
∥∥2

V
dt ≤ C(ν, T, |u0|H , |ω|Cα([0,T ];H ))

Moreover, from (9) we have
∣∣∣∣
dv(n) (t)

dt

∣∣∣∣
V ′

≤ νCA

∥∥v(n) (t)
∥∥

V
+ C

∣∣u(n) (t)
∣∣2

H
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and thus
∣∣v(n)

∣∣
W 1,2(0,T ;V ′) ≤ C(ν, T, |u0|H , |ω|Cα ([0,T ];H ))

with a new constant independent of n.
We have proved that the sequence {v(n)} is bounded in L2 (0, T ; V ) and

W 1,2 (0, T ; V ′). Hence, by a classical compactness Theorem 21, there is a
subsequence {v(nk )} which converges strongly to some v in L2 (0, T ; H ) and
C([0, T ], D(A)′). By difference, {u(nk )} converges strongly to u = v + z in the
same topologies. This convergence allows us to pass to the limit from (6) to (5)
for every ϕ ∈ D(A).

Finally, the boundedness of {v(n)} in L2 (0, T ; V ) and W 1,2 (0, T ; V ′) implies
that v is in L2 (0, T ; V ) and W 1,2 (0, T ; V ′), hence in C ([0, T ] ; H ) by a well
known Theorem 22. Thus also u ∈ C ([0, T ] ; H ). The proof is complete �

2.3. Continuous Dependence on ω, Progressive Measurability,

Solution to Equation (3)

With methods similar to those of uniqueness we may prove that the solution
of the deterministic Eq. (5) depends continuously on ω.

Theorem 8. Given

u0 ∈ H, ω(1), ω(2) ∈ Cα ([0, T ] ; H )

for some α > 0, the solutions u(1), u(2) corresponding to ω(1), ω(2) satisfy

sup
t∈[0,T ]

∣∣u(1) (t) − u(2) (t)
∣∣

H

≤ C

(
ν, T, |u0|H ,

∫ T

0

∣∣u(1) (r )
∣∣2

H
dr,

∫ T

0

∣∣u(2) (r )
∣∣2

H
dr

) ∣∣ω(1) − ω(2)
∣∣
Cα ([0,T ];H ) .

Proof: Denote by z(1), z(2) the functions (8) with respect to ω(1), ω(2). Let

y = v(1) − v(2) = u(1) − u(2) − (
z(1) − z(2)) .

Using the properties of z(1) and z(2), and arguments similar to those used in the
proof of Theorem 4, we get

1

2

d

dt
|y|2H + ν ‖y‖2

V ≤ ν

2
‖y‖2

V + Cν

∣∣u(1)
∣∣2

H
|y|2H

+ Cν

(∣∣u(1)
∣
∣

H
+ ∣

∣u(2)
∣
∣

H

)2 ∣
∣z(1) − z(2)

∣
∣2

H
.

It is then easy to conclude by Gronwall lemma. �
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Consider now Eq. (3) and assume that (W (t))t≥0 is a Brownian motion in
H , with covariance Q, defined on a filtered probability space (�,F , (Ft )t≥0, P).
Since for P-a.e. ω ∈ �, the function t 
→ Wt (ω) belongs to Cα([0, T ]; H ) for
every α ∈ (0, 1

2 ), let us consider the following canonical situation: chosen α ∈(
0, 1

2

)
, take � = Cα ([0, T ] ; H ), with the Borel σ -field, the filtration associated

to the canonical process t 
→ ω (t), and the measure P given by the law of the
previous Brownian motion (W (t))t≥0. In this way the canonical process t 
→
ω (t), is a Brownian motion in H , with covariance Q, having all paths of class
Cα ([0, T ] ; H ).

Let u0 : � → H be a given F0-measurable random variable. Given any path
t 
→ ω (t), of the Brownian motion described above, taken the corresponding initial
condition u0 (ω), let u (t, ω) be the unique solution of (5), continuous in H . The
function (t, ω) 
→ u (t, ω) is a stochastic process, F-measurable for every t ≥ 0,
since u (., ω) depends continuously on ω. It is also adapted since we may repeat
the argument just given on any interval [0, t], with arbitrary t ≥ 0. Along with the
pathwise uniqueness proved above, we have the first part of the following theorem:

Theorem 9. Given an F0-measurable r.v. u0 : � → H, there is a unique contin-
uous in H adapted process (u (t))t≥0 solution of Eq. (3). Moreover, if E |u0|2H < ∞
then

E |u (t)|2H +
∫ t

0
2νE ‖u(s)‖2

V ds = E |u0|2H + TrQ · t (12)

and

E

[

sup
t∈[0,T ]

|u (t)|2H + ν

∫ T

0
‖u(s)‖2

V ds

]

≤ C
(
E |u0|2H , TrQ, T

)
. (13)

If in addition E |u0|p
H < ∞ for some p ≥ 2, then

E

[

sup
t∈[0,T ]

|u (t)|p
H

]

≤ C
(

p, E |u0|p
H , TrQ, T

)

and

1

T
E

∫ T

0
|u(s)|p

H ds ≤ C (p, TrQ, ν, k0)

(
1 + E |u0|p

H

T

)
. (14)

Proof: The first claim has been proved above. We give only the proof of the part
with p ≥ 2 since the case p = 2 is easier. To shorten a bit the notations we write
ut in place of u(t) (we do not need the components here).

Let

τR = inf
{
t ≥ 0 : |ut |2H ≥ R

} ∧ T,
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and notice that τR ↑ T as R → ∞. We have

πnut∧τR = πnu0 +
∫ t∧τR

0
[−νπn Aus − πn B (us, us)] ds + πn Wt∧τR

= πnu0 +
∫ t

0
[−νπn Aus∧τR − πn B(us∧τR , us∧τR )]1s≤τR ds

+
∫ t

0
1s≤τR πndWs .

From Itô formula, we have

sup
t∈[0,θ]

∣∣πnut∧τR

∣∣p + pν

∫ θ

0
|πnus |p−2

H 〈πn Aus, πnus〉H 1s≤τR ds

≤ 2 |πnu0|p
H + 2pν

∫ θ

0
|πnus |p−2

H |〈πn B(us, us), πnus〉H |1s≤τR ds

+ 2 sup
t∈[0,θ]

∣∣∣M (p)
t

∣∣∣ + p (p − 1) T r (πn Q)
∫ θ

0
|πnus |p−2

H 1s≤τR ds

where

M (p)
t = p

∫ t

0
1s≤τR |πnus |p−2

H 〈πnus, πndWs〉H .

By Burkholder–Davis–Gundy inequality

E sup
t∈[0,θ]

∣∣
∣M (p)

t

∣∣
∣

H
≤ C (p, TrQ) E

[(∫ θ

0
1s≤τR |πnus |2p−2

H ds

)1/2
]

≤ 1

4
E

[

sup
t∈[0,θ]

∣∣πnut∧τR

∣∣p

H

]

+ C ′ (p, TrQ) E

∫ θ

0
1s≤τR |πnus |p−2

H ds

where all terms here and below are finite thanks to the stopping time. Hence

1

2
E sup

t∈[0,θ]

∣
∣πnut∧τR

∣
∣p

H
+ pνE

∫ θ

0
|πnus |p−2

H 〈πn Aus, πnus〉H 1s≤τR ds

≤ 2E |u0|p
H + 2pνE

∫ θ

0
|πnus |p−2

H | 〈πn B (us, us) , πnus〉H |1s≤τR ds

+ 2C ′ (p, TrQ) E

∫ θ

0
1s≤τR |πnus |p−2

H ds

+ p (p − 1) TrQ

∫ θ

0
|πnus |p−2

H 1s≤τR ds.
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First we can take the limit as n → ∞ (recall the uniform bound coming from the
stopping time) and then deduce

1

2
E sup

t∈[0,θ]

∣∣ut∧τR

∣∣p

H
≤ E |u0|p

H + 1 + C ′′ (p, TrQ) E

∫ θ

0
1s≤τR sup

t∈[0,s]

∣∣ut∧τR

∣∣p

H
ds

which implies

E sup
t∈[0,T ]

∣∣ut∧τR

∣∣p

H
≤ C

(
p, TrQ, E |u0|p

H

)

by Gronwall lemma. By monotone convergence,

E sup
t∈[0,T ]

|ut |p
H ≤ C

(
p, TrQ, E |u0|p

H

)
.

Finally, from

k0 pνE

∫ θ

0
|us |p

H 1s≤τR ds ≤ 2E |u0|p
H + 2C ′′ (p, TrQ) E

∫ θ

0
1s≤τR |us |p−2

H ds

we deduce

k0 pν

2
E

∫ θ

0
|us |p

H 1s≤τR ds ≤ 2E |u0|p
H + C (p, TrQ, ν, k0) · θ

and finally (14) with a new constant. The proof is complete. �

2.4. Non-Viscous Limit

One of the peculiar features of the GOY model is that we may prove global
existence of solutions for ν = 0, even if in a sense this model resembles the 3D
Euler equations, where such a global result is unknown. For the 2D Euler equations
there is a second conserved quantity, the enstrophy, which yields a further a priori
estimate on which the global existence of solutions is based. In 3D, such an estimate
does not exists, and similarly it does not exist for the GOY model. But the nonlinear
term of the GOY model is, in the analogy with particle systems, finite-range. Due
to this fact, the unique a priori estimate of conservation of energy has stronger
consequencies than in the case of Navier–Stokes equations and is sufficient to pass
to the limit in the nonlinear term, and even for initial conditions of class H only
(for 2D Euler equations one needs finite enstrophy initial conditions).

Let D be the set of all ϕ ∈ H with compact support (namely with only a finite
number of components being different from zero). Given

u0 ∈ H, ω ∈ Cα ([0, T ] ; H )

for some α > 0, consider the deterministic equation with zero viscosity

〈u(t), ϕ〉H −
∫ t

0
〈B (u(s), ϕ) , u(s)〉H ds = 〈u0, ϕ〉H + 〈ω(t), ϕ〉H (15)



Some Rigorous Results on a Stochastic GOY Model 691

with ϕ ∈ D. To prove the existence of solutions we have to assume some additional
space regularity of the forcing term.

Theorem 10. Given

u0 ∈ H, ω ∈ Cα ([0, T ] ; H ) ∩ L2(0, T ; V )

for some α > 0, there exists a solution u in L∞ (0, T ; H ) of Eq. (15). Moreover,
for all its components un, we have un ∈ C([0, T ] ; R). Such a solution may be
constructed as the weak star limit in L∞ (0, T ; H ) of a sequence (uνk )k∈N of
solutions of Eq. (5) with viscosity νk > 0, with the additional property that uνk

n
converges uniformly to un.

Proof: Step 1 (uniform estimates in L∞ (0, T ; H )). Let uν be the solution of
Eq. (5) with viscosity ν > 0. Let us set vν = uν − ω and omit the superscript ν in
the intermediate computations. Then v is solution of the following problem

dv

dt
+ ν Av = −B(v + ω, v + ω)dt − ν Aω, (16)

Let us multiply this equation by v and, using the fact that < B(v + ω, v), v >= 0,
we get the following estimate (C denotes a generic constant that may take different
values on different lines)

1

2

d

dt
|v|2H + ν‖v‖2

V ≤ | < B(v + ω,ω), v > | + ν‖ω‖V ‖v‖V

≤ C |v|2H‖ω‖V + C |ω|2H‖ω‖V + C‖ω‖V |v|2H + ν

2
‖ω‖2

V + ν

2
‖v‖2

V .

Using Gronwall Lemma, we get

|v(t)|2H ≤ e
∫ t

0 (1+C‖ω(s)‖V )ds |v0|2H
+

∫ t

0
e
∫ t

s (1+C‖ω(s)‖V )dr
(
C |ω(s)|2H + ν‖ω(s)‖V

) ‖ω(s)‖V ds

Here we can assume that there exists ν0 > 0 such that ν ≤ ν0. Hence, we get a
uniform estimate on

|vν(t)|2H ≤ C(ν0, T, |v0|H , ‖ω‖C([0,T ];H ), ‖ω‖L2(0,T ;V )).

Hence, we get that also uν is uniformly bounded in L∞(0, T ; H ).
Step 2 (uniform estimates on components in Cα([0, T ] ; R)). From the pre-

vious step, we know in particular that

sup
t∈[0,T ]

∣∣uν
n (t)

∣∣ ≤ C
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independently of n and ν ≤ ν0 (the independence on n is not even needed here).
From Eq. (5) written componentwise

uν
n (t) = uν

n (0) − νk2
n

∫ t

0
uν

n (s) ds

−
∫ t

0
ikn

(
1

4
uν

n−1uν
n+1 − uν

n+1uν
n+2 + 1

8
uν

n−1uν
n−2

)
ds + ωn (t) (17)

we deduce that for every n there is a constant Cn , independent of ν ≤ ν0, such that

‖un‖Cα ([0,T ];R ≤ Cn.

By Ascoli–Arzelà theorem applied to every single n, there is a sequence (ν(n)
k )k∈N

going to zero such that u
ν

(n)
k

n converges uniformly to some u∞
n ∈ C([0, T ]; R). By

a diagonal procedure, we may chose a sequence (νk)k∈N independent of n such
that uνk

n converges uniformly to some un ∈ C([0, T ] ; R). From the bound of the
previous step one has the weak star convergence in L∞(0, T ; H ) of some subse-
quence of uν and one may take (νk)k∈N with both properties; the weak limit in
L∞(0, T ; H ) has clearly un as components, by a simple argument using the defi-
nition of weak star limit. Summarizing, we have a sequence (νk)k∈N and a function
u ∈ L∞(0, T ; H ) with components in C([0, T ] ; R) such that uνk converges weak
star to u in L∞(0, T ; H ) and uνk

n converges uniformly to un . From the uniform
convergence it is easy to pass to the limit in the integral Eq. (17) and get (15). The
proof is complete. �

The uniqueness of solutions is an open problem. With a classical argument,
see Ref. 1, one can prove the existence of a measurable selection in ω, thus the
existence of a stochastic process that solves the stochastic zero-viscosity equation.
However, the progressive measurability of a measurable selection is an open
problem too.

3. INVARIANT MEASURES

For every x ∈ H there is a unique continuous adapted solution in H , call it
(ux (t))t≥0. We also have (Theorem 4) that, for every t ≥ 0, if xn → x in H then
uxn (t) → ux (t), P-a.s.

From these facts it is clear that the formula

(Ptϕ) (x) = E [ϕ (ux (t))]

defines a mapping Pt : Bb (H ) → Bb (H ), which in addition has the Feller property
Pt (Cb (H )) ⊂ Cb (H ) (by the dominated convergence theorem). One can show (as
in Ref. 6) that (ux (t))t≥0 defines a Markov process. We recall that a probability
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measure µ on H (endowed with the Borel σ -field) is invariant if

µ (ϕ) = µ (Ptϕ)

for every t ≥ 0 and ϕ ∈ Cb (H ).

Theorem 11. There exists an invariant measure µ.

Proof: Let us consider the solution with initial condition x = 0, that we denote
by (ux (t))t≥0. Let νt be the law of ux (t) on H . Define, for every T ≥ 0, the
probability measure µT on H as

µT = 1

T

∫ T

0
νsds.

Since the semigroup Pt has the Feller property, if we prove that the family {µT }T ≥0

is tight in H , then the existence of an invariant measure follows by the classical
method of Krylov and Bogoliubov (see Ref. 6). From (12) and the Chebishev
inequality, we get

µT

(‖x‖2
V ≥ R

) = 1
T

∫ T
0 νs

(‖x‖2
V ≥ R

)
ds

≤ 1
T

∫ T
0

E[‖ux (s)‖2
V ]

R ds ≤ C
R .

This method is due to Chow and Hasminski. (4) The proof is complete. �

The spatial regularity of invariant measures can be considerably improved;
we do not develop this topic. On the other side, we shall use below the following
fact:

Proposition 12. For every p ≥ 2 there is a constant C (p, TrQ, ν, k0) such that
every invariant measure µ satisfies

µ
[‖·‖p

H

] ≤ C (p, TrQ, ν, k0) .

Proof: Step 1. Let µ be an invariant measure. If
(
�,F , (Ft )t≥0 , P

)
is the

filtered probability space where the Brownian motion is defined, consider the
enlarged filtered probability space

�′ = � × H,F ′ = F ⊗ B,F ′
t = Ft ⊗ B, P ′ = P ⊗ µ

with the new Brownian motion (W ′ (t)) and the F ′
0-measurable r.v. u0 defined as

W ′ (t, ω, x) = W (t, ω) , u0 (ω, x) = x .
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The law of u0 is µ. The unique solution (u (t)) of (3) with initial condition u0 is
a stationary process, with the law of u (t) equal to µ for every t ≥ 0. We have to
show that E |u (t)|p

H < ∞.
Step 2. Given ε > 0, let Rε > 0 be such that P(|u0|p

H > Rε) < ε. Let �ε ∈ F
be defined as �ε = {|u0|p

H ≤ Rε}; we have P(�ε) ≥ 1 − ε. Define u(ε)
0 as u0 on

�ε, 0 otherwise. Let (u(ε)(t))t≥0 be the unique solution of Eq. (3) with initial
condition u(ε)

0 . Just looking at the integral form of (3) (which has an elementary
pathwise meaning) it is easy to realize that u(ε)(·, ω) = u(·, ω) for P-a.e. ω ∈ �ε.
For (u(ε)(t))t≥0 we have (14):

1

T
E

∫ T

0

∣
∣u(ε) (s)

∣
∣p

H
ds ≤ C (p, TrQ, ν, k0)

⎛

⎜
⎝1 +

E
[∣∣∣u(ε)

0

∣∣∣
p

H

]

T

⎞

⎟
⎠

≤ C (p, TrQ, ν, k0)

(
1 + Rε

T

)
.

Then, given N > 0,

E
(|u0|p

H ∧ N
) = 1

T

∫ T

0
E

[|u (s)|p
H ∧ N

]
ds

= 1

T

∫ T

0
E

[
1�ε

(|u (s)|p
H ∧ N

)]
ds

+ 1

T

∫ T

0
E

[
1�c

ε

(|u (s)|p
H ∧ N

)]
ds

≤ 1

T

∫ T

0
E

[
1�ε

(∣∣u(ε) (s)
∣∣p

H
∧ N

)]
ds + Nε

≤ 1

T

∫ T

0
E

[∣∣u(ε) (s)
∣∣p

H

]
ds + Nε

≤ C (p, TrQ, ν, k0)

(
1 + Rε

T

)
+ Nε.

It is now sufficient to take first the limit as T → ∞, then as ε → 0, finally as
N → ∞. The proof is complete. �

Remark 13. Similarly one can show that µ
[‖·‖2

V

]
< ∞ is true for every invari-

ant measure.
Finally, let us remark on the uniqueness and ergodicity of invariant measures.

This is a rather technical topic, so we do not add it to this work. However, on the
basis of the experience developed in the last ten years on this subject for stochastic
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Navier–Stokes equations, it is natural to expect that one can prove uniqueness
and ergodicity, including exponential mixing, under the assumption that the noise
forces a finite but sufficiently high number of modes. The proof can proceed by
coupling of the low modes and Foias–Prodi inequalities to control the high modes.
See Ref. 25 and references therein. In view of our application to K41 theory it
would be interesting to prove a more difficult result, namely ergodicity when only
very few modes are activated directly by the noise. There is hope to get such a result
either for the finite dimensional Galerkin approximations, following Refs. 8, 26 or
even for the infinite dimensional problem following Ref. 15. However, especially
the second result, that would fit with our framework, requires a long preparatory
work of Malliavin calculus (see Refs. 23 and 24) that requires careful investigation
beyond the scope of the present work.

3.1. Balance Relations for Invariant Measures

Given ν > 0, let µν be any invariant measure of the GOY model and let Eν

be the corresponding expectation. We have proved that

Eν
[|u|p

H

] ≤ C (p, TrQ, ν, k0)

hence in particular the mean quantities Eν[|un|2] and Eν[unun+1un+2] are well
defined and finite. We have the following fundamental balance relation. This is
one of the main advantages of the stochastic model: a rigorous and simple balance
relation, with physical meaning, for expected values of basic quantities.

Proposition 14.

νk2
n Eν

[|un|2
] + i2kn−1 Eν [unun+1un+2]

= ikn−3 Eν [un−2un−1un] + ikn−2 Eν [un−1unun+1] + T r
(
σnσ

∗
n

)

2
.

Proof: As in the proof of Proposition 12, let u (t) be a stationary solution asso-
ciated to µν . We may apply Itô formula componentwise and get

1

2
d |un|2 = (−νk2

n |un|2 + ikn−3un−2un−1un + ikn−2un−1unun+1

− 2ikn−1unun+1un+2) dt + d Mn + T r
(
σnσ

∗
n

)

2
dt

where Mn is a square integrable martingale by the proved integrability properties
of u and thus

Eν
[|un (t)|2] + ∫ t

0 νk2
n Eν

[|un (s)|2] ds + ∫ t
0 i2kn−1 Eν [unun+1un+2]ds
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= Eν
[|un (0)|2] + ∫ t

0 ikn−3 Eν [un−2un−1un]ds

+ ∫ t
0 ikn−2 Eν [un−1unun+1]ds + T r(σnσ

∗
n )

2 t.

By stationarity, Eν[|un(t)|2] = Eν[|un(0)|2] and the integrands are independent
of s. The balance relation readily follows. �

The term νk2
n Eν[|un|2] has the meaning of mean rate of energy dissipation

at scale k−1
n ; i2kn−1 Eν [unun+1un+2] may be interpreted as the mean rate of en-

ergy flux from scale k−1
n to smaller scales, and similarly ikn−3 Eν [un−2un−1un] +

ikn−2 Eν [un−1unun+1] as the mean rate of energy flux to scale k−1
n from larger

scales;
T r(σnσ

∗
n )

2 is the mean rate of energy injection at scale k−1
n due to external

forces.

3.2. Symmetries of Solutions and Invariant Measures

When the force acting on the GOY model is only white noise, as in this work,
its symmetries reflect into some symmetries of solutions.

We know that the solution is pathwise unique (two solutions on the same
stochastic basis coincide with probability one), so it is also unique in law (two
solutions on two given stochastic basis have the same law). Therefore, given any
sequence Sn ∈ {−1, 1}, the unique solutions u (t) and v (t) of Eq. (2) and

dvn + νk2
nvndt + ikn

(
1

4
vn−1vn+1 − vn+1vn+2 + 1

8
vn−1vn−2

)
dt

= Snσndβn (18)

with equal-in-law initial conditions (in the sense that the initial conditions can be
random but must have the same law). Thus E [un] = E [vn] and so on. From this
remark the proof of the following statement is obvious.

Any sequence {Sn} in {−1, 1} induces a mapping S : H → H defined as
(Su)n = Snun .

Proposition 15. Let {Sn} be a sequence in {−1, 1} of period 3 (Sn+3 = Sn) with
Sn Sn+1Sn+2 = 1 and let S be the associated mapping. Let u (t) be the solution
with initial condition u0 and let v(t) be defined as v(t) = Su(t). Then v(t) is the
solution of (18) with initial condition v0 = Su0.

Lemma 16. If in addition u0 and v0 have the same law, then also u and v have
the same law.
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Corollary 1. Let u (t) be the solution with initial condition 0. Then

E [un (t)] = 0, E [un (t) un+1 (t)] = 0 for every n.

This result can be generalized to other initial conditions and other moments
(not all!), but we limit ourselves to the previous cases as an illustration. Concerning
invariant measures we have:

Proposition 18. There exists an invariant measure µ of the GOY equations with
the properties

Eµ [un] = 0, Eµ [unun+1] = 0 for every n.

Proof: With the notations of the proof of Theorem 11, Let νt be the law of u0 (t)
(zero initial condition) and let µT = 1

T

∫ T
0 νsds. The expected value of un and

unun+1 under µT is zero, by the previous corollary. This property is stable under
weak limit, so it is satisfied by the invariant measure constructed in the proof of
Theorem 11. The proof is complete. �

Of course if we have uniqueness of invariant measures, the unique invariant
measure has the property stated in the proposition. However we cannot prove that
such property is true for every invariant measures in case of non-uniqueness: we
cannot exclude a symmetry breaking.

4. REMARKS ON K41 THEORY

4.1. Definitions

For every ν > 0, let µν be any invariant measure of the GOY model as above.
We have proved above that Eν[|u|p

H ] < ∞ for every p ≥ 0.
The expression

Sν
p (n) := E

[∣∣uν
n

∣∣p]

which is finite, is called the p-order structure function. It is considered, for the GOY
model, as the analog of Sν

p(r ) = E[‖v(r · e) − v(0)‖p], where v(x) is a stationary
isotropic random field describing a 3D turbulent fluid; the correspondence is
through r = k−1

n .
One is interested in a scaling behavior of the form

E
[∣∣uν

n

∣
∣p] ∼ k

−ζp
n .

This can be true only in an intermediate range of n’s, since for n large enough
the decay is the one of regular functions. So we look for a range of the
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form n ∈ [n− (ν) , n+ (ν)], with n−, n+ : (0, 1) → N such that n− (ν) < n+ (ν),
limν→0

n−(ν)
n+(ν) = 0, and sometimes limν→0 n− (ν) = ∞. There is no unique pre-

scription for n−, n+, but following Kolmogorov and dimensional analysis one has
the idea that n+ (ν) should roughly satisfy

lim
ν→0

n+ (ν)

log2 ν
= −3

4
(19)

corresponding to the idea k−1
n+(ν) ∼ ν3/4. In fact we shall work on a slightly reduced

range, like k−1
n+(ν) ∼ ν3/4−ε for some ε > 0.

Definition 19. Let (µν)ν>0 be any family of invariant measures of the GOY
model. Let n−, n+ : (0, 1) → N such that n− (ν) < n+ (ν) and limν→0

n−(ν)
n+(ν) = 0

and let

R = {(ν, n) ∈ (0, 1) × N : n ∈ [n− (ν) , n+ (ν)]} .

Given p ≥ 0, we call sub and super asymptotic exponents of order p, for the family
(µν)ν>0 relative to the range [n− (ν) , n+ (ν)], the numbers (possibly infinite)

ζ+
p := lim inf

ν→0
(ν,n)∈R

1

n
log2 Eν [|un|p]

ζ−
p := lim sup

ν→0
(ν,n)∈R

1

n
log2 Eν [|un|p]

Clearly ζ−
p ≤ ζ+

p . If ζ−
p = ζ+

p we call the common value ζp the asymptotic expo-
nent of order p.

We could say that (µν)ν>0 has the K41 scaling property if

ζ2 = 2

3
with n+ satisfying (19).

It is useful to introduce another notation.

Definition 20. Standing the previous notations, we call flux asymptotic exponent
the number

ζ
f lux

3 := lim sup
ν→0

(ν,n)∈R

1

n
log2 Eν [|unun+1un+2|]

when it exists.
The number ζ

f lux
3 clearly resembles ζ3, at the dimensional level at least, but we

cannot prove they are equal. The superscript “flux” should not be misunderstood:
the mean rate of flux is described by ikn Eν [unun+1un+2], thus its asymptotic
exponent is ζ3 − 1.
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The function p 
→ ζp looks like a free energy associated to a one-dimensional
particle system with energy − log |un|, but this analogy may be dangerous since we
are not dealing with an equilibrium system; let us mention it only at formal level as
a technical tool. In spite of this similarity, it is not easy to prove the existence of ζp

by classical arguments like sub-additivity. Large deviations of log|un |
n and Gartner-

Ellis theorem are also heuristically involved, see also the number α mentioned in
Ref. (20), but its rigorous use is another open problem.

4.2. General Facts on Asymptotic Exponents

The elementary (rigorous) results of this section do not depend on the GOY
equation but just on the definition of asymptotic exponents. They give us a refer-
ence picture over which we can put the particular results due to the balance law of
the GOY model.

In Sec. 5 we shall prove results about the claim ζ
f lux

3 = 1. So it is interesting

to know at least one (obvious) inequality between ζ
f lux

3 and ζ−
3 or ζ3.

Lemma 21. If ζ
f lux

3 exists, then

ζ−
3 ≤ ζ

f lux
3 .

If in addition also ζ3 exist, then

ζ3 ≤ ζ
f lux

3 .

Proof: By Hölder inequality

|Eν [unun+1un+2]| ≤
2∏

j=0

Eν
[∣∣un+ j

∣∣3
]1/3

hence

1

n
log2 |Eν [unun+1un+2]| ≤ 1

3

2∑

j=0

1

n
log2 Eν

[∣∣un+ j

∣∣3
]
.

The result easily follows. �

Lemma 22. Given a range [n− (ν) , n+ (ν)], the function p 
→ ζ−
p is concave

over [0,∞).
If the function p 
→ ζp is well defined on some interval, relative to the same

range [n− (ν) , n+ (ν)], then it is concave on that interval.
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Proof: Again by Hölder inequality we have

Eν
[|un|αx+(1−α)y

] ≤ Eν [|un|x ]α Eν [|un|y]1−α

for every x, y ≥ 0 and α ∈ (0, 1). Hence

1

n
log2 Eν

[|un|αx+(1−α)y
] ≤ α

1

n
log2 Eν [|un|x ] + (1 − α)

1

n
log2 Eν [|un|y] .

It is now sufficient to take the limit as ν → 0 constrained on R. �

We do not know yet how to get informations on ζ−
3 from the GOY model,

otherwise, thanks to the previous concavity result, this would be another route to
have criteria for the result ζ−

2 ≥ 2
3 (investigated below in Sec. 5):

ζ−
2 ≥ 2

3
ζ−

3

(since ζ−
0 = 0).

One can write several relations between the asymptotic exponents and ratios
of moments. The following one will be used below.

Lemma 23. Let the range [n− (ν) , n+ (ν)] be given, with

ν−ε ≤ kn−(ν) < kn+(ν) ≤ ν−α

for some α > ε > 0 and sufficiently small ν. Assume

ζ
f lux

3 = 1.

Then

ζ−
2 ≥ 2

3
⇔ lim sup

ν→0
(ν,n)∈R

1

log ν−1
log

Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
≤ 0

and

ζ2 = 2

3
⇔ lim sup

ν→0
(ν,n)∈R

1

log ν−1
log

Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
= 0.

Remark 24. Although obvious, let us make explicit that the right-hand-side
condition in the first equivalence means that for every ε > 0 there is ν0 > 0 such
that

Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
≤ ν−ε
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for every (ν, n) ∈ (0, ν0] × [n− (ν) , n+ (ν)]. For instance, this is fulfilled if

Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
≤ C log ν−1

for (ν, n) ∈ (0, ν] × [n− (ν) , n+ (ν)] with some ν > 0, C > 0.

Remark 25. Similarly, the right-hand-side condition in the second equivalence
means that for every ε > 0 there is ν0 > 0 such that

νε ≤ Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
≤ ν−ε

for every (ν, n) ∈ (0, ν0] × [n− (ν) , n+ (ν)]. For instance, this is fulfilled if

C1

log ν−1
≤ Eν

[|un|2
]

|Eν [unun+1un+2]|2/3
≤ C2 log ν−1

for (ν, n) ∈ (0, ν] × [n− (ν) , n+ (ν)] with some ν > 0, C1, C2 > 0.

Proof: Let us prove the implication ⇒ of the first equivalence. Given ε > 0,
from ζ−

2 ≥ 2
3 and ζ

f lux
3 = 1 there is ν0 > 0 such that

Eν
[|un|2

] ≤ k
− 2

3 +ε
n

k−1−ε
n ≤ |Eν [unun+1un+2]|

for (ν, n) ∈ (0, ν0] × [n− (ν) , n+ (ν)], thus

Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
≤ k5ε/3

n ≤ k5ε/3
n+(ν) ≤ ν−αε.

The result easily follows.
Conversely, given ε > 0, there is ν0 > 0 such that

Eν
[|un|2

] ≤ ν−ε |Eν [unun+1un+2]|2/3

|Eν [unun+1un+2]| ≤ k−1+ε
n

for (ν, n) ∈ (0, ν0] × [n− (ν) , n+ (ν)], thus

Eν
[|un|2

] ≤ ν−2ε/3k(−1+ε)2/3
n

lim sup
ν→0

(ν,n)∈R

1

n
log2 Eν

[|un|2
] ≤ (−1 + ε)

2

3
+ ε lim sup

ν→0

1

n− (ν)
log2 ν−1.

The result follows from the assumption on n− (ν). The proof of the first
equivalence is complete and the proof of the second one is analogous. �
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Remark 26. One of the main conceptual results of the present work is that, due
to the GOY equation balance laws, the equivalences stated by the previous lemma
are true (up to some detail on [n− (ν) , n+ (ν)]) without the assumption ζ

f lux
3 = 1.

Indeed, both conditions on the two sides of both the equivalences imply ζ
f lux

3 = 1
(when n− (ν) = 1, using the GOY balance laws).

4.3. Comments on the Value of ζ2

Kolmogorov(17) conjectured the value ζ2 = 2
3 for isotropic fully turbulent

3D fluids. The assumptions at the basis of his work would also give ζp = p
3 . All

numerical experiments on the GOY model (as well as experiments on real 3D
fluids) indicate a strong deviation from this value for large p, and in the direction

ζp <
p

3
for p > 3.

On the value

ζ3 = 1

there is also a general agreement. Some numerical experiment on the GOY model
give also

ζ2 >
2

3

(ζ2 close to 0.7), but there is also some controversy on this deviation. Finally,
notice that ζ0 = 0. A natural question is thus whether

• ζp is a strictly concave function over the whole range p ≥ 0, and ζ2 > 2
3

or
• ζp is a line on p ∈ [0, p∗], p∗ ≥ 3 (with presumably p∗ = 3), so that

ζ2 = 2
3 , and ζp is strictly concave for p > p∗

(there are also other possibilities of course, we have mentioned only the most
natural two of them). If it exists, the derivative at zero,

α := dζp

dp
|p=0 (20)

is also an interesting quantity, related to large deviation properties of log|un |
n . Part

of the previous question is whether

α = 2

3
or α >

2

3
.

The answer to these questions contains striking informations on the dynamics and
is not just the minor difference between 0.66 and 0.7: see Sec. 4.4 below.
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The aim of this paper is modest with respect to these difficult questions. First,
we give rigorous criterions to establish that

ζ
f lux

3 = 1

which is in a sense similar to the (unproved) belief ζ3 = 1. The criterion is based
on an assumption on the behavior in ν of the quantity

sup
n∈[n−(ν),n+(ν)]

Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
. (21)

We cannot prove that this assumption is satisfied but the numerical investigation
of its validity looks more robust than the fit of scaling exponents. In addition,
the reformulation of scaling problems in terms of such kind of assumptions looks
appealing for future investigations (it could be related to the structure of statistical
dependence of the variables un , un+1, un+2 on which we hope one can throw some
light).

Second, as a consequence of the previous fact (always under the previous
assumption on (21)), we get ζ−

2 ≥ 2
3 and thus ζ2 ≥ 2

3 if ζ2 exists. This is not a new
information but our aim is to start to construct rigorous proofs of segments of the
theory.

Finally, we also have a criterion, again based on
Eν[|un |2]

|Eν [unun+1un+2]|2/3 , to investigate

the question ζ2 = 2
3 . However, it is not clear whether our numerical results support

this result.

4.4. Dynamical Relevance of ζ2 > 2
3 Against ζ2 = 2

3

The difference between the two cases ζ2 > 2
3 and ζ2 = 2

3 , although maybe
quantitatively small, is the signature of a great difference in dynamical behavior.

The result ζ2 = 2/3 is the most innocent one from the dynamical viewpoint.
The configuration un = C · k−1/3

n is approximatively a solution, unstable, and the
system fluctuates not far from it most of the time, except for bursts that produce
anomalies in moments of high order but not for p = 2 (and 3). What is not clear
in this picture is the discrepancy with the simulations/fits that gave results like
ζ2 = 0.7, and the presumable phase transition associated to the change in shape
of the function p 
→ ζp (from the straight line p 
→ p/3 at least for 0 ≤ p ≤ 3 to
a strictly concave function for large p), remarkable for a one dimensional system.

The result ζ2 > 2/3 is, on the other side, quite intriguing from the dynamical
point of view. Most of the time |un| should be exponentially smaller than k−1/3

n .
Since we believe that ζ3 = 1, the burst should be such that their value and proba-
bility compensate exactly to produce the integer exponent of order three. However
the latter miracle could just be a consequence of a flow balance equations. But
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what could produce values of |un| exponentially smaller than k−1/3
n with over-

whelming probability? One possibility is a locking phenomenon easily observed
in the numerical evolution of the configuration (un)n≥1. Most of the configurations
have a general tendency to shift to the right, with a progressive direct cascade of
energy. But certain configurations with a change of sign (properly interpreted in
the complex plane) have a tendency to rest and act as a sink of energy from both
sides (namely with a direct and inverse local cascade around them), so that the
other components have typically a smaller value of energy than the one of a normal
continuous flow. Suddenly, when a certain threshold is reached, these locking con-
figurations start to move and carry energy to high frequencies. Dissipation, which
is quite low during the locking phase, has a burst when the wave of energy reaches
the dissipation range. This is in agreement with the bursty records of dissipation.

The picture in the case ζ−
2 > 2/3 is by no means that of a continuous direct

cascade (up to fluctuations), but that of emergence of structures that absorb energy
from nearby modes (in a direct and inverse fashion), keep quite stably the energy
at a given mode, and then suddenly have a spike. The analogy with the idea of
coherent vortex structures is strong, even if it is questionable whether the three
dimensionality of the space may offer the necessary degrees of freedom to unlock
the resting configurations much faster than in the GOY model. Thus we believe
that even if the truth is ζ−

2 > 2/3 for the GOY model, this is not one of the result
that presumably should be easily transferred to real fluids.

There is however at least a third possibility. In our numerical simulations we
observe a modest extra value of steepness with respect to the slope 2/3, but it
decreases with ν and becomes unclear due to computational limitations. So the
correct limit result could be ζ2 = 2/3 but numerics for finite ν undoubtedly show a
correction. On one side, this correction should be captured by a proper definition,
which is not our definition of ζ2. On the other side, one should understand the
dynamical reason for this correction, that could be related to the explanation given
above of the case ζ2 > 2/3.

5. RIGOROUS RESULTS

To avoid general conditions, we impose throughout this section the following
assumption on the noise:

σ1 = · · · = σ4 = 1√
2

(
σ 0
0 σ

)
, σn = 0 for n > 4. (22)

With minor quantitative change the results are the same with a finite number of σn

different from zero, with at least nonzero σ1 and σ2.
On the range [n− (ν) , n+ (ν)] we need to impose that

kn+(ν) << ν−3/4.
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We need a separation, although arbitrarily small, between the order of kn+(ν) in ν

and the order 3/4. One way to express this condition is

lim inf
ν→0

n+(ν)

log2 ν
> −3

4
(23)

Let us stress again that (22) and (23) will be standing assumptions in this
subsection. This will not be repeated in the main statements.

Concerning n− (ν), sometimes it is essential to assume n− (ν) = 1 in order
to start an iteration on the balance laws (14). In other cases we need a slightly
diverging n− (ν) to get rid of minor divergences. The usual assumption in such a
case will be

lim sup
ν→0

log2 ν−1

n− (ν)
< ∞. (24)

Let (µν)ν>0 be a family of stationary measures of the GOY model depending
on the viscosity and let Eν denote the corresponding expectation. Notice that all the
next results do not depend on the measures we choose, so possible non-uniqueness
of invariant measures does not affect our results.

Remark 27. In general, Eν [unun+1un+2] are pure imaginary numbers. All terms
in the energy balance at mode n are real. Moreover,

i · Eν [unun+1un+2] = |Eν [unun+1un+2]| sgn (−i Eν [unun+1un+2]) .

The proof of this fact is easy from the balance relations (14) and an iterative
procedure.

Lemma 28. The inequality

i · Eν [unun+1un+2] ≤ 2σ 2k−1
n

is true for every n.

Proof: From the balance relations (14), with the notations

φn = ikn−1 Eν [unun+1un+2], εn = νk2
n Eν

[|un|2
]

we have

φn + εn = φn−2 + φn−1

2
+ T r

(
σnσ

∗
n

)

4
. (25)

Notice that all these numbers are real.
From (25) and εn ≥ 0 we readily have

φn ≤ φn−2 + φn−1

2
+ σ 2

n

4
.
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Taking into account that φ−1 = φ0 = 0 and assumption (22), we easily bound the
first 4 terms φ1, . . . , φ4 by

σ 2

4
,

3σ 2

8
,

9σ 2

16
,

23σ 2

32

and thus, simplifying,

φn ≤ σ 2 for every n.

The proof is complete. �

We start with the simplest form of our main result. It is not entirely a particular
case of the next one since it also give us stronger results. We are not sure that its
assumption is satisfied by our numerics (contrary to the assumption of the next
theorem), so we give it mainly for pedagogical reasons, since its conditions are
easier to read.

Theorem 29. Assume that for some ν > 0 and γ > 0 we have

Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
≤ γ

for every (ν, n) ∈ (0, ν] × [1, n+ (ν)]. Then there are constants C > 0 and ν0 > 0,
depending only on σ , γ and n+ such that

Ck−1
n ≤ i · Eν [unun+1un+2] ≤ 2σ 2k−1

n

and

Ck−1
n ≤ |Eν [unun+1un+2]| ≤ 2σ 2k−1

n (26)

for (ν, n) ∈ (0, ν0] × [1, n+ (ν)] (the right-hand-side inequality is true for every
n). Hence also, a fortiori,

Eν
[|un|2

] ≤ 2γ σ 2k−2/3
n

for (ν, n) ∈ (0, ν0] × [1, n+ (ν)]. Therefore, with respect to any range of the form
[n− (ν) , n+ (ν)] with diverging n− (ν), we have

ζ−
2 ≥ 2

3
.

In addition, the mean dissipation rate is exponentially smaller than the mean flux
rate for (ν, n) ∈ (0, ν0] × [1, n+ (ν)], as stated in claim 30.

Proof: Step 1 (estimates on εn). We use the notations of the previous lemma.
We prove the following claim:
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Claim 30. There is α ∈ (0, 1) depending only on n+ and given any δ > 0 there
is ν0 > 0 depending only on δ, γ and n+, such that

εn ≤ δαn |φn|2/3

for (ν, n) ∈ (0, ν0] × [1, n+ (ν)].
Under our assumptions, for 1 ≤ n ≤ n+ (ν) we have

εn ≤ νk2
nγ |E [unun+1un+2]|2/3 = 2−4/3γ νk4/3

n |φn|2/3

≤ (
2−4/3γ νε1

) (
ν1−ε1 k4/3+ε2

n+(ν)

)
k−ε2

n |φn|2/3

for every ε1, ε2 > 0. From the assumption on n+ (ν), there exist ε > 0 and ν ′
0 > 0

such that

n+ (ν)

log2 ν
≥ −3

4
+ ε

for every ν ∈ (
0, ν ′

0

)
. Hence ν

3
4 −ε2n+(ν) ≤ 1 for ν ∈ (

0, ν ′
0

)
, and thus, if we choose

ε1, ε2 > 0 such that

1 − ε1

4/3 + ε2
= 3

4
− ε

we have

ν1−ε1 k4/3+ε2

n+(ν) =
(
ν

1−ε1
4/3+ε2 2n+(ν)

)4/3+ε2 ≤ 1.

We have proved that for ν ∈ (
0, ν ′

0

)
and 1 ≤ n ≤ n+ (ν)

εn ≤ (
2−4/3γ νε1

)
k−ε2

n |φn|2/3 .

The claim 30 is an easy consequence of this result, with new symbols.
Step 2 (estimate from below for φ1, . . . , φ4). For future reference, let us stress

that all steps from now on will depend only on (25) and claim 30, so they remain
true under more general assumptions when these two ingredients are true.

Choose δ ≤ σ 2

40 (for instance). Let us work for (ν, n) ∈ (0, ν0] × [1, n+ (ν)].
From (25) we have

φ1 + ε1 = σ 2

4

where ε1 ≤ δα |φ1|2/3 (claim 30). Hence

φ1 + δα |φ1|2/3 ≥ σ 2

4
.
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By the smallness of δ, the maximum of the function x 
→ x + δα |x |2/3 for x < 0
is smaller than σ 2

4 . Hence we get

φ1 ≥ 0.

Together with the bound of step 3, this implies |φ1| ≤ σ 2 and thus ε1 ≤ δασ 4/3.
Therefore

φ1 ≥ σ 2

4
− δασ 4/3.

For n = 2, from (25) we have

φ2 + ε2 = φ1

2
+ σ 2

4

where ε2 ≤ δα2 |φ2|2/3 (claim 30), so

φ2 + δα2 |φ2|2/3 ≥ φ1

2
+ σ 2

4
≥ σ 2

4
.

As above we get

φ2 ≥ σ 2

4
− δα2σ 4/3.

The same is true for φ3 and φ4, with α3 and α4, so we have proved:

φn ≥ σ 2

4
− δαnσ 4/3for n = 1, 2, 3, 4.

One could prove a much better bound, but qualitatively this is sufficient.
Step 3 (estimate from below for φn , n ∈ [5, n+ (ν)]). In addition to δ ≤ σ 2

40
we also require that

δσ 4/3

1 − α
≤ σ 2

8
.

We prove by induction that

φn ≥ σ 2

4
− δσ 4/3 (1 + α + · · · + αn)

for (ν, n) ∈ (0, ν0] × [1, n+ (ν)]. This will complete the proof. This inequality is
true for n = 1, . . . , 4. Let us assume it is true for n = 1, . . . , k, for some k ≥ 4,
and let us prove it for n = k + 1. From (25) for n = k + 1 we have

φk+1 + εk+1 = φk−1 + φk

2
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with εk+1 ≤ δαk+1 |φk+1|2/3 (claim 30), so

φk+1 + δαk+1 |φk+1|2/3 ≥ φk−1 + φk

2

≥ σ 2

4 − δσ 4/3 (1+α+···+αk−1)+(1+α+···+αk)
2

≥ σ 2

4 − δσ 4/3
(
1 + α + · · · + αk

) ≥ σ 2

8 .

Again by the smallness of δ we have φk+1 ≥ 0, hence |φk+1| ≤ σ 2, εk+1 ≤
δαk+1σ 4/3,

φk+1 ≥ σ 2

4 − δσ 4/3
(
1 + α + · · · + αk

) − δαk+1σ 4/3

= σ 2

4 − δσ 4/3
(
1 + α + · · · + αk+1

)
.

The proof is complete. �

Since the results of the previous theorem depend only on (25) and claim 30,
the assumptions can be generalized, at the price of a less intuitive statement. The
simplest generalization would be to assume that there is a function γ : (0, 1) →
(0,∞) such that

Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
≤ γ (ν)

for (ν, n) ∈ (0, ν0] × [1, n+ (ν)] and

lim sup
ν→0

γ (ν)

log ν−1
< ∞.

Thus a logarithmic divergence in ν is still acceptable. In such a case one has

Eν
[
u2

n

] ≤ 2γ (ν) σ 2k−2/3
n

for (ν, n) ∈ (0, ν0] × [1, n+ (ν)] and

ζ−
2 ≥ 2

3

relative to any range of the form [n− (ν) , n+ (ν)] with diverging n− (ν) such that

lim
ν→0

log2 γ (ν)

n− (ν)
= 0.

The next theorem generalizes this idea in a sort of optimal way.
Let us also remark that one can perform generalizations in other directions:

for instance one can include a suitable dependence on n in the function γ , and a
stronger dependence on ν for sufficiently small n. These generalizations do not
seem to be motivated at present.
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Theorem 31. With n− (ν) = 1, assume (see also remark 24)

lim inf
ν→0

(ν,n)∈R

1

log ν−1
log

Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
≤ 0 (27)

Then we have claim 30, (26) with n− (ν) = 1, and

ζ−
2 ≥ 2

3

relative to any range of the form [n− (ν) , n+ (ν)] satisfying (24).

Proof: We have only to check claim 30 and the conclusion on ζ−
2 .

From (27), for every ε0 > 0 there is ν0 > 0 such that

Eν
[|un|2

] ≤ ν−ε0 |Eν [unun+1un+2]|2/3

for (ν, n) ∈ (0, ν0] × [1, n+ (ν)], thus

εn ≤ ν1−ε0 k2
n |E [unun+1un+2]|2/3 = 2−4/3ν1−ε0 k4/3

n |φn|2/3

≤ (
2−4/3νε1

) (
ν1−ε0−ε1 k4/3+ε2

n+(ν)

)
k−ε2

n |φn|2/3

for every ε1, ε2 > 0, and the proof of claim 30 is the same as in the previous
theorem, replacing the choice of ε1, ε2 (relative to ε of that proof) by the choice
of ε0 + ε1, ε2.

About ζ−
2 we just use Lemma 23. The proof is complete. �

We can also prove a converse implication. Unfortunately we cannot express
Theorems 31 and 32 as an if an only if (similarly to Lemma 23) because in both
theorems we impose the assumptions on the range [1, n+ (ν)] (to start an iteration
procedure) and deduce the conclusions on a smaller range [n− (ν) , n+ (ν)] subject
to property (24) (to delete minor divergences).

Theorem 32. If

ζ−
2 ≥ 2

3

relative to a range [1, n+ (ν)] then we have (26) on [1, n+ (ν)], and (27) on any
range satisfying (24).

Proof: Step 1 (estimates on εn). In place of claim 30 we have:

Claim 33 there is α ∈ (0, 1) depending only on n+ and given any δ > 0 there is
ν0 > 0 depending only on δ and n+, such that

εn ≤ δαn
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for (ν, n) ∈ (0, ν0] × [1, n+ (ν)].
From ζ−

2 ≥ 2
3 , for every ε > 0 there is ν0 such that

1

n
log2 Eν

[|un|2
] ≤ −2

3
+ ε

for (ν, n) ∈ (0, ν0] × [1, n+ (ν)], and thus

Eν
[|un|2

] ≤ 2−n( 2
3 −ε) = k

− 2
3 +ε

n .

Therefore

εn ≤ νk2
nk

− 2
3 +ε

n ≤ νε1

(
ν1−ε1 k4/3+ε2

n+(ν)

)
k−ε2

n

for every ε1, ε2 > 0. From the assumption on n+ (ν), if we choose ε1, ε2 > 0 such
that 1−ε1

4/3+ε2
= 3

4 − ε we get

εn ≤ νε1 k−ε2
n .

This proves claim 33.
Step 2 (estimate from below for φ1, . . . , φ4). Choose δ such that δα ≤ σ 2

8 .
Let us work for (ν, n) ∈ (0, ν0] × [1, n+ (ν)]. From (25) we have

φ1 + ε1 = σ 2

4
where ε1 ≤ δα (claim 33). Hence

φ1 ≥ σ 2

4
− δα.

In particular, by the smallness of δ, φ1 ≥ 0. For n = 2, from (25) we have

φ2 + ε2 = φ1

2
+ σ 2

4

where ε2 ≤ δα2 (claim 33), so

φ2 ≥ φ1

2
+ σ 2

4
− δα2 ≥ σ 2

4
− δα2

and in particular φ2 ≥ 0. The same is true for φ3 and φ4, with α3 and α4, so we
have proved:

φn ≥ σ 2

4
− δαn for n = 1, 2, 3, 4.

Step 3 (estimate from below for φn , n ∈ [5, n+ (ν)]). In addition to δα ≤ σ 2

8
we also require that

δσ 4/3

1 − α
≤ σ 2

8
.
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We prove by induction that

φn ≥ σ 2

4
− δ (1 + α + · · · + αn)

for (ν, n) ∈ (0, ν0] × [1, n+ (ν)]. This will complete the proof of (26). This in-
equality is true for n = 1, . . . , 4. Let us assume it is true for n = 1, . . . , k, for
some k ≥ 4, and let us prove it for n = k + 1. From (25) for n = k + 1 we have

φk+1 + εk+1 = φk−1 + φk

2

with εk+1 ≤ δαk+1 (claim 33), so

φk+1 ≥ φk−1 + φk

2
− δαk+1

≥ σ 2

4 − δ
(1+α+···+αk−1)+(1+α+···+αk)

2 − δαk+1

≥ σ 2

4 − δ
(
1 + α + · · · + αk

) − δαk+1.

The proof of (26) is complete.
Step 4. Finally, to obtain (27) it is sufficient to use Lemma 23. The proof is

complete. �

We give now a criterium for the Kolmogorov scaling ζ2 = 2
3 , following

Lemma 23. It is again based on an unproved assumption. However, while
on the basis of numerical simulations of us and other authors we strongly be-
lieve that the assumptions of Theorem 31 are satisfied, so ζ−

2 ≥ 2
3 , we are still

unsure about the assumptions and the conclusion of the next theorem.

Theorem 34. With n− (ν) = 1, assume (see also Remark 25)

lim
ν→0

(ν,n)∈R

1

log ν−1
log

Eν
[|un|2

]

|Eν [unun+1un+2]|2/3
= 0. (28)

Then

ζ2 = 2

3

relative to any range satisfying (24).

Proof: From Theorem 31 we already know ζ−
2 ≥ 2

3 , but mainly we know
that (26) on [1, n+(ν)] is true. Thus we may apply Lemma 23. The proof is
complete. �

Similarly, we also have:
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Theorem 35. With n− (ν) = 1, assume

ζ2 = 2

3
.

Then we have (28) on any range satisfying (24).

5.1. Numerical Results

In this section we simulate system (2) in the particular case when the noise
satisfies condition (22) with σ = 1. We are interested in mean values in the
stationary regime: hence we start with the trivial initial condition un(0) = 0 for
every n and we compute time means after a certain transient period. The relation
between time averages and probabilistic expectation, namely the ergodicity of the
invariant measure, is not studied rigorously in this paper and will be the object of
future researches; but the experience with 2D Navier–Stokes equations suggests
that we should expect ergodicity (see in particular Ref. 15).

In our simulations we observe the time evolution of local-in-time averages
of some observable like |un|2 for small and large n. Then we decide by explicit
observation when the stationary regime is reached. However, we could have lost
events which appear only with exponentially small probability. For this and other
reasons, we do not declare the results of these simulations as conclusive but only
as a first rough indication.

Of course we have to cut the infinite dimensional system. Hence, given N ,
we impose the boundary conditions

uN+1 (t) = uN+2 (t) = 0.

The choice of N , for a given ν > 0, is of a number of the order

N ∼ log2 ν−1

(thus since we take ν of the form 10−K , N will be roughly 3.3 · K ). This choice
looks natural since we want to observe the range [1, n+ (ν)] with n+ (ν) <<
3
4 log2 ν−1, and by rough arguments it seems that the dissipation in the range
[ 3

4 − ε, 1] log2 ν−1 is exhaustive.
Computationally, we have used fourth order Runge-Kutta explicit integration

with a time step roughly of size ν. Thus the global evolution time we could check
was different, depending on ν. For this reason the reliability of the results of our
simulations may decrease with ν.

For a given ν > 0, we plot the values of
Eν[|un |2]

|Eν [unun+1un+2]|2/3 in logarithmic scale

against n. The purpose is to explore the validity of the conditions of Theorems
31 and 34. Having in mind Remarks 24 and 25, we explore whether the following
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Fig. 1. Values of
Eν

[
|un |2

]

|Eν [un un+1un+2]|2/3 in logarithmic scale vs. n for ν = 10−6, 10−8, 10−10, 10−12.

upper inequality or even both ones

C1

log ν−1
≤ Eν

[|un|2
]

|Eν [unun+1un+2]|2/3
≤ C2 log ν−1

could be satisfies for (ν, n) ∈ (0, ν] × [n− (ν) , n+ (ν)] with some ν > 0, C1, C2 >

0. In Fig. 1 we show the result for

ν = 10−6, 10−8, 10−10, 10−12.

Standing that no conclusion can be drawn from four values, the indication is that
the upper bound, related to Theorem 31, should be true. There is a little uncertainty
about the validity of the upper bound for very small n, but if more careful numerics
should confirm that (just) for such n the upper bound increases strongly than
C2 log ν−1, one still could modify Theorem 31 (we have not described all possible
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generalizations, but the iterative procedure in the proof of such theorems can start
under more general assumptions, since for small n the prefactor of Eν[|un|2] in the
balance relations is extremely small). In conclusion, we think that our simulations
and theorems are a strong support for the result

ζ−
2 ≥ 2

3
.

On the other side, it is more critical to draw conclusions about the lower
bound. On one side, the numerical values of the lower bounds in each plot is
encouraging, around 1 or at most 1/2, so one could think that also the assumptions
of Theorem 34 are satisfied, and ζ2 = 2

3 . But the decreasing in n shape of all curves
is a major feature that alarm us. Comparing just the four plots, the (approximate)
slope of the curves is smaller for smaller values of ν. So we cannot decide between
the following two possibilities, that should be observed in difficult experiments
with much smaller values of ν: i) either this slope goes to zero (as ν decreases), the
lower bound is of order C1

log ν−1 and ζ2 = 2
3 ; ii) or the slope does not go to zero, and

we start to appreciate that the lower bound is an infinitesimal of higher order than
those admissible for Theorem 34. There are also other possibilities, including: iii)
that K41 scaling is true on a much smaller range [1, n0

+(ν)], with n0
+(ν) << n+(ν),

while on [n0
+(ν), n+(ν)] we observe other exponents, slightly larger than 2/3.

In any case, the slope is an indication that some form of correction to K41
scaling exists. Perhaps it cannot be captured by the definition of ζ2 chosen here.
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